Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Nano Lett ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625005

RESUMO

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38639625

RESUMO

Background: Uremic pruritus is a prevalent clinical symptom in maintenance dialysis patients. Existing evidence establishes a connection between itch transmission and the gastrin-releasing peptide/gastrin-releasing peptide receptor signaling pathway. Objective: To investigate the involvement of the gastrin-releasing peptide/gastrin-releasing peptide receptor in itch sensation signaling within the spinal cord of uremic pruritus. Design: An animal study was conducted. Setting: The research was conducted at the First Hospital of Hebei Medical University. Participants: A total of 50 male C57BL/6J mice (weight: 30-40 g) were acquired from Beijing Weitonglihua Laboratory Animal Center. Interventions: Mice were categorized into five groups: normal, sham, Y, A, and B. The Y group received intrathecal injections of saline (5 ul). The A group received intrathecal injections of gastrin-releasing peptide (0.1 nmol, 5 ul), and the B group received intrathecal injections of the gastrin-releasing peptide receptor antagonist RC-3095 (0.3 mmol, 5 ul). Primary Outcome Measures: (1) Pruritus behavior of mice and (2) expression of gastrin-releasing peptide, gastrin-releasing peptide receptor, and inositol trisphosphate. Results: Scratching times in the Y group significantly surpassed those of normal and sham groups, increasing over time. Gastrin-releasing peptide and receptor expression rose in the uremic pruritus mouse model compared to normal and sham groups (P < .05). Expression of gastrin-releasing peptide and its receptor was significantly elevated in the uremic pruritus mouse model compared to the normal and sham groups (P < .05). Inositol trisphosphate expression in the dorsal spinal horn of Y group mice increased compared to normal and sham groups. Intrathecal gastrin-releasing peptide heightened inositol trisphosphate expression, while the peptide receptor antagonist RC-3095 reduced it. Y group scratching times were higher than normal and sham groups, increasing after intrathecal gastrin-releasing peptide but decreasing after RC-3095 injection. Conclusion: The gastrin-releasing peptide/gastrin-releasing peptide receptor signaling pathway is involved in the development of uremic pruritus.

3.
Hum Genet ; 143(3): 263-277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451291

RESUMO

Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.


Assuntos
Mutação de Sentido Incorreto , Defeitos do Tubo Neural , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Defeitos do Tubo Neural/genética , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Feminino , Masculino , Camundongos , Animais
4.
J Transl Med ; 22(1): 229, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433193

RESUMO

Natural killer (NK) cells are unique from other immune cells in that they can rapidly kill multiple neighboring cells without the need for antigenic pre-sensitization once the cells display surface markers associated with oncogenic transformation. Given the dynamic role of NK cells in tumor surveillance, NK cell-based immunotherapy is rapidly becoming a "new force" in tumor immunotherapy. However, challenges remain in the use of NK cell immunotherapy in the treatment of solid tumors. Many metabolic features of the tumor microenvironment (TME) of solid tumors, including oxygen and nutrient (e.g., glucose, amino acids) deprivation, accumulation of specific metabolites (e.g., lactate, adenosine), and limited availability of signaling molecules that allow for metabolic reorganization, multifactorial shaping of the immune-suppressing TME impairs tumor-infiltrating NK cell function. This becomes a key barrier limiting the success of NK cell immunotherapy in solid tumors. Restoration of endogenous NK cells in the TME or overt transfer of functionally improved NK cells holds great promise in cancer therapy. In this paper, we summarize the metabolic biology of NK cells, discuss the effects of TME on NK cell metabolism and effector functions, and review emerging strategies for targeting metabolism-improved NK cell immunotherapy in the TME to circumvent these barriers to achieve superior efficacy of NK cell immunotherapy.


Assuntos
60645 , Neoplasias , Humanos , Microambiente Tumoral , Células Matadoras Naturais , Ácido Láctico , Neoplasias/terapia
5.
Cell Rep ; 43(2): 113749, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329876

RESUMO

Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.


Assuntos
Ciclopentanos , Elementos Nucleotídeos Longos e Dispersos , Pirimidinas , Retroelementos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Aberrações Cromossômicas , Proteínas Culina/genética , Enzimas de Conjugação de Ubiquitina
6.
Res Sq ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260607

RESUMO

Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased secretion of extracellular heat shock protein 90 (eHSP90) to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with human disease and suggest that sequence variation in HECTD1 may play a role in the etiology of human NTDs.

7.
J Clin Med ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256653

RESUMO

Diaphragm Dysfunction (DD) is a respiratory disorder with multiple causes. Although both unilateral and bilateral DD could ultimately lead to respiratory failure, the former is more common. Increasing research has recently delved into perioperative diaphragm protection. It has been established that DD promotes atelectasis development by affecting lung and chest wall mechanics. Diaphragm function must be specifically assessed for clinicians to optimally select an anesthetic approach, prepare for adequate monitoring, and implement the perioperative plan. Recent technological advancements, including dynamic MRI, ultrasound, and esophageal manometry, have critically aided disease diagnosis and management. In this context, it is noteworthy that therapeutic approaches for DD vary depending on its etiology and include various interventions, either noninvasive or invasive, aimed at promoting diaphragm recruitment. This review aims to unravel alternative anesthetic and operative strategies that minimize postoperative dysfunction by elucidating the identification of patients at a higher risk of DD and procedures that could cause postoperative DD, facilitating the recognition and avoidance of anesthetic and surgical interventions likely to impair diaphragmatic function.

8.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240591

RESUMO

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Assuntos
Proteases Virais 3C , Enterovirus Humano D , Interferon Tipo I , Transdução de Sinais , Humanos , Proteases Virais 3C/metabolismo , Antígenos Virais/metabolismo , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano D/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/metabolismo
10.
Sci Total Environ ; 914: 169850, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185176

RESUMO

Chaetomorpha valida, filamentous green tide algae, poses a significant threat to both aquatic ecosystems and aquaculture. Vibrio alginolyticus Y20 is a new algicidal bacterium with an algicidal effect on C. valida. This study aimed to investigate the physiological and molecular responses of C. valida to exposure to V. alginolyticus Y20. The inhibitory effect of V. alginolyticus Y20 on C. valida was content dependent, with the lowest inhibitory content being 3 × 105 CFU mL-1. The microscopic results revealed that C. valida experienced severe morphological damage under the influence of V. alginolyticus Y20, with a dispersion of intracellular pigments. V. alginolyticus Y20 caused the decrease in chlorophyll-a content and Fv/Fm in C. valida. At the molecular level, V. alginolyticus Y20 downregulated the expression of genes related to photosynthetic pigment synthesis, light capture, and electron transport. Furthermore, V. alginolyticus Y20 induced oxidative damage to algal cells. The production of reactive oxygen species significantly increased after 11 days of exposure. Malondialdehyde content significantly increased, and the cell membranes were severely damaged by lipid peroxidation. The content of superoxide dismutase and peroxidase also markedly increased, whereas catalase content decreased significantly. Additionally, peroxisomes were inhibited due to the downregulation of PEX expression, leading to irreversible oxidative damage to algal cells. Our findings provided a new theoretical basis for exploring the interaction between algicidal bacteria and green tide algae at the molecular level.


Assuntos
Clorófitas , Proliferação Nociva de Algas , Alga Marinha , Ecossistema , Bactérias/metabolismo
11.
J Am Coll Surg ; 238(2): 197-205, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861219

RESUMO

BACKGROUND: Quadratus lumborum block (QLB) has been found to be advantageous for laparoscopic colorectal surgery. This study hypothesized that preoperative anterior QLB at lateral supra-arcuate ligament (QLB-LSAL) would decrease postoperative opioid usage and offer improved analgesia within the context of multimodal analgesia compared with lateral QLB (LQLB) for laparoscopic colorectal surgery. STUDY DESIGN: In this randomized controlled trial, 82 American Society of Anesthesiologists physical status I to III class colorectal cancer patients undergoing laparoscopic radical resection were enrolled and randomly assigned to receive either LQLB or QLB-LSAL (0.375% ropivacaine 0.3 mL/kg bilaterally for each group). The primary outcomes were the total intravenous morphine equivalent consumption at 24 hours postoperatively. RESULTS: Intravenous morphine equivalent consumption at 24 hours postoperatively was significantly reduced in the QLB-LSAL group compared with that in the LQLB group with per-protocol analysis (29.2 ± 5.8 vs 40.5 ± 9.6 mg, p < 0.001) and intention-to-treat analysis (29.6 ± 6.1 vs 40.8 ± 9.5 mg, p < 0.001). Time to first patient-controlled analgesia request was notably longer in the QLB-LSAL group than that in the LQLB group (10.4 ± 3.9 vs 3.7 ± 1.5 hours, p < 0.001). CONCLUSIONS: Preoperative bilateral ultrasound-guided QLB-LSAL reduces morphine usage and extends the duration until the first patient-controlled analgesia demand within the framework of multimodal analgesia when compared with LQLB after laparoscopic colorectal surgery.


Assuntos
Analgesia , Cirurgia Colorretal , Laparoscopia , Humanos , Anestésicos Locais , Dor Pós-Operatória/prevenção & controle , Analgésicos Opioides/uso terapêutico , Morfina/uso terapêutico , Ultrassonografia de Intervenção
12.
Respir Med ; 221: 107480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043865

RESUMO

BACKGROUND: The imaging findings of Mycoplasma pneumoniae pneumonia (MPP) vary; however, few studies have focused on the relationship of imaging classification with clinical manifestations and outcomes. OBJECTIVE: To prospectively investigate whether chest imaging classification in Mycoplasma pneumoniae pneumonia (MPP) is associated with its clinical features and outcomes. METHODS: A total of 1,401 hospitalized children with MPP were enrolled from January 2019 to December 2021. Imaging findings were categorized as bronchopneumonia and consolidation/atelectasis according to X-ray, and bronchopneumonia, consolidation/atelectasis, bronchiolitis, and mosaic pattern according to computed tomography (CT). Clinical characteristics and outcomes of patients with different imaging classifications were prospectively analyzed based on electronic medical records. RESULTS: Bronchopneumonia was the most common finding (59.6%), while consolidation/atelectasis was the most severe group. Clinical manifestations and laboratory indicators for the consolidation/atelectasis group included serious abnormalities. Further, outcomes of the patients were worse, including having longer total durations of fever and hospitalization, greater hospitalization expenses, and a higher likelihood of developing refractory MPP, necrotizing pneumonia, and bronchiolitis obliterans (BO) in this group. The incidence of bronchiolitis, a disease characterized by a high prevalence of fever, moist rales, and an atopic constitution, tended to increase after the coronavirus disease pandemic and predisposed patients to BO. A mosaic pattern occurred in allergic and young individuals, with wheezing as the main manifestation, with patients having relatively mild symptoms and good outcomes. CONCLUSION: Different imaging classifications have different clinical features and clinical outcomes; thus, formulating an imaging-based classification system is of great clinical value.


Assuntos
Bronquiolite Obliterante , Bronquiolite , Broncopneumonia , Pneumonia por Mycoplasma , Atelectasia Pulmonar , Criança , Humanos , Mycoplasma pneumoniae , Broncopneumonia/complicações , Estudos Retrospectivos , Pneumonia por Mycoplasma/diagnóstico por imagem , Pneumonia por Mycoplasma/epidemiologia , Pneumonia por Mycoplasma/complicações , Atelectasia Pulmonar/complicações , Bronquiolite/diagnóstico por imagem , Bronquiolite/epidemiologia , Bronquiolite/complicações , Bronquiolite Obliterante/complicações , Febre
13.
Neurochem Res ; 49(2): 507-518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955815

RESUMO

Previous studies suggested that postsynaptic neuroligin-2 may shift from inhibitory toward excitatory function under pathological pain conditions. We hypothesize that nerve injury may increase the expression of spinal MAM-domain GPI-anchored molecule 1 (MDGA1), which can bind to neuroligin-2 and thereby, alter its interactions with postsynaptic scaffolding proteins and increase spinal excitatory synaptic transmission, leading to neuropathic pain. Western blot, immunofluorescence staining, and co-immunoprecipitation studies were conducted to examine the critical role of MDGA1 in the lumbar spinal cord dorsal horn in rats after spinal nerve ligation (SNL). Small interfering ribonucleic acids (siRNAs) targeting MDGA1 were used to examine the functional roles of MDGA1 in neuropathic pain. Protein levels of MDGA1 in the ipsilateral dorsal horn were significantly upregulated at day 7 post-SNL, as compared to that in naïve or sham rats. The increased levels of GluR1 in the synaptosomal membrane fraction of the ipsilateral dorsal horn tissues at day 7 post-SNL was normalized to near sham level by pretreatment with intrathecal MDGA1 siRNA2308, but not scrambled siRNA or vehicle. Notably, knocking down MDGA1 with siRNAs reduced the mechanical and thermal pain hypersensitivities, and inhibited the increased excitatory synaptic interaction between neuroligin-2 with PSD-95, and prevented the decreased inhibitory postsynaptic interactions between neuroligin-2 and Gephyrin. Our findings suggest that SNL upregulated MDGA1 expression in the dorsal horn, which contributes to the pain hypersensitivity through increasing the net excitatory interaction mediated by neuroligin-2 and surface delivery of GluR1 subunit in dorsal horn neurons.


Assuntos
Neuralgia , Ratos , Animais , Regulação para Cima , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo , Células do Corno Posterior/metabolismo , Neuralgia/patologia , Nervos Espinhais , RNA Interferente Pequeno/metabolismo , Hiperalgesia/metabolismo , Medula Espinal/patologia
14.
Int J Oncol ; 64(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063203

RESUMO

The tumor microenvironment (TME) is a complex system composed mainly of tumor cells, mesenchymal cells and immune cells. Macrophages, also known as tumor­associated macrophages (TAMs), among innate immune cells, are some of the most abundant components of the TME. They may influence tumor growth and metastasis through interactions with other cell populations in the TME and have been associated with poor prognosis in a variety of tumors. Therefore, a better understanding of the role of TAMs in the TME may provide new insight into tumor therapy. In the present review, the origin and classification of TAMs in the TME were outlined and their polarization and dual effects on tumor cells, as well as emerging strategies for cancer therapies targeting TAMs, were discussed.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Macrófagos Associados a Tumor , Macrófagos , Microambiente Tumoral
15.
Biochem Biophys Res Commun ; 687: 149161, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37931418

RESUMO

Evidence from mice with global deletion of fatty-acid transport protein4 (FATP4) indicates its role on ß-oxidation and triglycerides (TG) metabolism. We reported that plasma glycerol and free fatty acids (FA) were increased in liver-specific Fatp4 deficient (L-FATP4-/-) mice under dietary stress. We hypothesized that FATP4 may mediate hepatocellular TG lipolysis. Here, we demonstrated that L-FATP4-/- mice showed an increase in these blood lipids, liver TG, and subcutaneous fat weights. We therefore studied TG metabolism in response to oleate treatment in two experimental models using FATP4-knockout HepG2 (HepKO) cells and L-FATP4-/- hepatocytes. Both FATP4-deificient liver cells showed a significant decrease in ß-oxidation products by ∼30-35% concomitant with marked upregulation of CD36, FATP2, and FATP5 as well as lipoprotein microsomal-triglyceride-transfer protein genes. By using 13C3D5-glycerol, HepKO cells displayed an increase in metabolically labelled TG species which were further increased with oleate treatment. This increase was concomitant with a step-wise elevation of TG in cells and supernatants as well as the secretion of cholesterol very low-density and high-density lipoproteins. Upon analyzing TG lipolytic enzymes, both mutant liver cells showed marked upregulated expression of hepatic lipase, while that of hormone-sensitive lipase and adipose-triglyceride lipase was downregulated. Lipolysis measured by extracellular glycerol and free FA was indeed increased in mutant cells, and this event was exacerbated by oleate treatment. Taken together, FATP4 deficiency in liver cells led to a metabolic shift from ß-oxidation towards lipolysis-directed TG and lipoprotein secretion, which is in line with an association of FATP4 polymorphisms with blood lipids.


Assuntos
Lipólise , Ácido Oleico , Camundongos , Animais , Lipólise/fisiologia , Triglicerídeos/metabolismo , Ácido Oleico/metabolismo , Glicerol/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Lipoproteínas/metabolismo
16.
ACS Omega ; 8(43): 40099-40109, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929117

RESUMO

Photodegradation, a widely accepted and promising technology, has gained significant attention for addressing the escalating concerns of environmental deterioration. In this article, rhombohedral corundum-type In2O3 nanocrystals were obtained from the transformation of InOOH via a simple calcining process. Under ultraviolet light irradiation, they showed higher photocatalytic activity in the decomposition of rifampin compared to that of the cubic phase In2O3 and P25-TiO2. Furthermore, the probable pathway and the feasible mechanism for the degradation of rifampin were also deeply explored and discussed.

17.
Front Biosci (Landmark Ed) ; 28(10): 247, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37919055

RESUMO

The retina, a component of the central nervous system, is composed of six distinct neuronal types and various types of glial cells. A technique for single-cell transcriptome analysis called single-cell RNA sequencing (scRNA-seq) can be employed to study the complicated dynamics of several types of retinal cells. It meticulously examines how various cell types express their genes, shedding light on all biological processes. scRNA-seq is an alternative to regular RNA-seq, which cannot identify cellular heterogeneity. Understanding retinal diseases requires research on retinal cell heterogeneity. The identification of novel cell subpopulations can provide information about disease occurrence and progression as well as the specific biological functions of particular cells. We currently have a better understanding of the interactions among the brain, the retina, and its visual pathways thanks to the use of scRNA-seq to examine retinal development and disease pathogenesis. Additionally, this technology offers fresh perspectives on the sensitivity and molecular basis of cell subtypes linked to retinal diseases. Thanks to scRNA-seq technology, we now have a better understanding of the most recent developments and difficulties in retinal development and disorders. We believe that scRNA-seq is an important tool for developing cutting-edge treatments for retinal diseases. This paper presents a systematic review of the history of sRNA-seq technology development and provides an overview of the unique subtypes of retinal cells and the specific gene markers this technology identifies.


Assuntos
Retina , Doenças Retinianas , Humanos , Neurônios , Análise de Sequência de RNA/métodos , Doenças Retinianas/genética , Biologia , Perfilação da Expressão Gênica/métodos
18.
J Mol Model ; 29(12): 389, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030739

RESUMO

CONTEXT: Ni-rich layered oxides have been widely studied as cathodes because of their high energy density. However, the gradual structural transformation during the cycle will lead to the capacity degradation and potential decay of the cathode materials. In this paper, first-principle calculations were used to investigate the formation energy, and geometric and electronic structure of Mg-doped LiNiO2 cathode for Li-ion batteries. The results show that Mg doping has little effect on the geometric structure of LiNiO2 but has great effect on its electronic structure. Our data give an insight into the microscopic mechanism of Mg-doped LiNiO2 and provide a theoretical reference for experimental research, which is helpful to the design of safer and higher energy density Ni-rich cathodes. METHOD: In this work, all calculations were performed by the VASP package; the PBE functional in the generalized gradient approximation (GGA) was employed to describe the exchange-correlation interactions. An energy cutoff of 520 eV and a 5 × 5 × 3 Monkhorst-Pack mesh of k-point sampling in the Brillouin zone were chosen for all calculations. All atoms were relaxed until the convergences of 10-5 eV/f.u in energy and 0.01 eV/Å in force were reached.

19.
J Pain Res ; 16: 3961-3970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026457

RESUMO

Purpose: Total hip arthroplasty (THA) is often associated with moderate to severe pain. The present study compared the efficacy of circum-psoas block (CPB) with supra-inguinal fascia iliaca block (SIFIB) for postoperative analgesia in patients undergoing THA. Patients and Methods: In this randomized trial, sixty-four patients undergoing THA were allocated randomly to the CPB group or SIFIB group with 40 mL of 0.3% ropivacaine. The primary outcome was dynamic pain score at 6 h postoperatively. Secondary outcomes included dynamic pain scores at 12, 24 and 48 h; static pain scores; sensory and motor block; opioid consumption; time to first opioid request; length of hospital stay; patient satisfaction; and adverse events. Results: CPB patients showed significantly lower dynamic pain scores at 6 (3.11 ± 0.66 vs 4.47 ± 0.74, respectively; P = 0.000), 12 (2.52 ± 0.73 vs 3.53 ± 0.85, respectively; P = 0.000) and 24 h (2.30 ± 0.57 vs 2.87 ± 0.71, respectively; P = 0.001) after surgery, as well as lower static pain scores at 6 and 12h (P = 0.001 and P = 0.033 respectively) than SIFIB patients. Lower opioid consumption was observed in the CPB group at 24 and 48 h (P = 0.000, both) than in the SIFIB group. Patients in the CPB group reported improved quadriceps strength at 6 and 12 h (P = 0.000, both), as well as better muscle strength of hip flexion at 6, 12 and 24 h (P = 0.000, P = 0.000 and P = 0.025 respectively). Compared with SIFIB, CPB was associated with increased sensory block coverage at 6, 12 and 24 h (P = 0.000, P = 0.000, and P =0.022, respectively). Conclusion: CPB has a greater potential to alleviate postoperative pain and improve recovery in THA patients than SIFIB.

20.
Angew Chem Int Ed Engl ; 62(50): e202312728, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37888877

RESUMO

With increasing ecological and environmental concerns, tin (Sn)-based perovskite light-emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low-cost solution-processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)-based PeLEDs due to the fast crystallization rate of Sn-based perovskite films and undesired oxidation from Sn2+ to Sn4+ , leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high-quality phenethylammonium tin iodide (PEA2 SnI4 ) perovskite films by using L-glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2 SnI4 -based PeLEDs. We show that the hydrogen-bond and coordinate interactions between GSH and PEA2 SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state-of-the-art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2 SnI4 -based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn-based PeLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...